Schistosoma mansoni egg detection from contours detection

Date: 2012-04-25 14:00

Place: Auditório Jacy Monteiro, bloco B, Cidade Universitária  |  City: São Paulo, Brazil


Schistosoma mansoni is one of the parasites which causes schistosomiasis. According to the Brazilian Ministry of Health, several million people in the country are currently affected by schistosomiasis. One way of diagnosing it is by egg identification in stool. This task is extremely time-consuming and tiring, especially in cases of low endemicity, when only few eggs are present. In such cases, a computational approach to help the detection of eggs would greatly facilitate the diagnostic task. Schistosome eggs present oval shape, have a translucent membrane and a spike, and their color is slightly yellowish. However, not all these features are observed in every egg and some of them are visible only with an adequate microscopic magnification. Furthermore, the visual aspect of the fecal material varies widely from person to person in terms of color and presence of different artifacts (such as particles which are not disintegrated by the digestive system), making it difficult to detect the eggs. In this work we investigate the problem of detecting lines which delimit the contour of the eggs. We propose a method comprising two steps. The first phase consists in detecting line-like structures using morphological operators. This line detection phase is divided into three steps: (i) line enhancement, (ii) line detection, and (iii) result refinement in order to eliminate line segments that are not of interest. The output of this phase is a set of line segments. The second phase consists in detecting subsets of line segments arranged in an elliptical shape, using an algorithm based on the Hough transform. Detected ellipses are strong candidates to contour of S. mansoni eggs. Experimental results show that the proposed approach has potential to be effectively used as a component in a computer system to help egg detection.


This email address is being protected from spambots. You need JavaScript enabled to view it.



Powered by iCagenda